Chapter 7

## Multimedia

- 7.1 Introduction to multimedia
- 7.2 Multimedia files
- 7.3 Video compression
- 7.4 Multimedia process scheduling
- 7.5 Multimedia file system paradigms
- 7.6 File placement
- 7.7 Caching
- 7.8 Disk scheduling for multimedia

## Introduction to Multimedia (1)





Video On Demand: (a) ADSL vs. (b) cable

## Introduction to Multimedia (2)

| Source               | Mbps  | GB/hr |
|----------------------|-------|-------|
| Telephone (PCM)      | 0.064 | 0.03  |
| MP3 music            | 0.14  | 0.06  |
| Audio CD             | 1.4   | 0.62  |
| MPEG-2 movie         | 4     | 1.76  |
| Digital camcorder    | 25    | 11    |
| Uncompressed TV      | 221   | 97    |
| Uncompressed HDTV    | 648   | 288   |
| Fast Ethernet        | 100   |       |
| EIDE disk            | 133   |       |
| ATM OC-3 network     | 156   |       |
| SCSI UltraWide disk  | 320   |       |
| IEEE 1394 (FireWire) | 400   |       |
| Gigabit Ethernet     | 1000  |       |
| SCSI Ultra-160 disk  | 1280  |       |

• Some data rates

- multimedia, high performance I/O devices

• Note: 1 Mbps =  $10^6$  bits/sec but 1 GB =  $2^{30}$  bytes

### Multimedia Files



#### A movie may consist of several files

# Audio Encoding (1)



- Audio Waves Converted to Digital
  - electrical voltage input
  - binary number as output

# Audio Encoding (2)

Error induced by finite sampling

 called quantization noise

- Examples of sampled sound
  - telephone pulse code modulation
  - audio compact disks

#### Video Encoding



#### Scanning Pattern for NTSC Video and Television

#### Video Compression The JPEG Standard (1)



RGB input data and block preparation

#### The JPEG Standard (2)



One block of the Y matrix and the DCT coefficients

## The JPEG Standard (3)

**DCT** Coefficients

#### Quantized coefficients

#### Quantization table

| 150 | 80 | 40 | 14 | 4 | 2 | 1 | 0 |
|-----|----|----|----|---|---|---|---|
| 92  | 75 | 36 | 10 | 6 | 1 | 0 | 0 |
| 52  | 38 | 26 | 8  | 7 | 4 | 0 | 0 |
| 12  | 8  | 6  | 4  | 2 | 1 | 0 | 0 |
| 4   | 3  | 2  | 0  | 0 | 0 | 0 | 0 |
| 2   | 2  | 1  | 1  | 0 | 0 | 0 | 0 |
| 1   | 1  | 0  | 0  | 0 | 0 | 0 | 0 |
| 0   | 0  | 0  | 0  | 0 | 0 | 0 | 0 |

| 150 | 80 | 20 | 4 | 1 | 0 | 0 | 0 |
|-----|----|----|---|---|---|---|---|
| 92  | 75 | 18 | 3 | 1 | 0 | 0 | 0 |
| 26  | 19 | 13 | 2 | 1 | 0 | 0 | 0 |
| 3   | 2  | 2  | 1 | 0 | 0 | 0 | 0 |
| 1   | 0  | 0  | 0 | 0 | 0 | 0 | 0 |
| 0   | 0  | 0  | 0 | 0 | 0 | 0 | 0 |
| 0   | 0  | 0  | 0 | 0 | 0 | 0 | 0 |
| 0   | 0  | 0  | 0 | 0 | 0 | 0 | 0 |

| 1  | 1  | 2  | 4  | 8  | 16 | 32 | 64 |
|----|----|----|----|----|----|----|----|
| 1  | 1  | 2  | 4  | 8  | 16 | 32 | 64 |
| 2  | 2  | 2  | 4  | 8  | 16 | 32 | 64 |
| 4  | 4  | 4  | 4  | 8  | 16 | 32 | 64 |
| 8  | 8  | 8  | 8  | 8  | 16 | 32 | 64 |
| 16 | 16 | 16 | 16 | 16 | 16 | 32 | 64 |
| 32 | 32 | 32 | 32 | 32 | 32 | 32 | 64 |
| 64 | 64 | 64 | 64 | 64 | 64 | 64 | 64 |

#### Computation of the quantized DCT coefficients

### The MPEG Standard (1)

| 150 | 80 | 20 | 4 |   | 0 | 0  | 0 |
|-----|----|----|---|---|---|----|---|
| 92  | 75 | 18 | 3 |   | 0 | 0  | 0 |
| 26  | 19 | 13 | 2 |   | 0 | 0  | 0 |
| 3   | 2  | 2  |   | 0 | 0 | 0  | 0 |
|     | 0  | 0  | 0 | 0 | 0 | 0  | 0 |
| 0   | 0  | 0  | 0 | 0 | 0 | 0  | 0 |
| 0   | 0  | 0  | 0 | 0 | 0 | 0  | 0 |
| ٥٢  | 0  | 0  | 0 | 0 | 0 | ^0 | 0 |

Order of quantized values when transmitted

# The MPEG Standard (2)

MPEG-2 has three kinds of frame: I, P, B

- 1. Intracoded frames
  - Self-contained JPEG-encoded pictures
- 2. Predictive frames
  - Block-by-block difference with last frame
- 3. **Bi-directional frames** 
  - Differences with last and next frame

### The MPEG Standard (3)



#### **Consecutive Video Frames**

## Multimedia Process Scheduling



- Periodic processes displaying a movie
- Frame rates and processing requirements may be different for each movie

# Rate Monotonic Scheduling

Used for processes which meet these conditions

- 1. Each periodic process must complete within its period
- 2. No process dependent on any other process
- 3. Each process needs same CPU time each burst
- 4. Any nonperiodic processes have no deadlines
- 5. Process preemption occurs instantaneously, no overhead



Time (msec) →

- Real Time Scheduling algorithms
  - -RMS
  - EDF

#### Earliest Deadline First Scheduling (2)



Another example of real-time scheduling with RMS and EDF

## Multimedia File System Paradigms



Pull and Push Servers

## **VCR** Control Functions

- Rewind is simple
  - set next frame to zero
- Fast forward/backward are trickier
  - compression makes rapid motion complicated
  - special file containg e.g. every 10<sup>th</sup> frame

#### Near Video on Demand



New stream starting at regular intervals

#### Near Video on Demand with VCR Functions



Buffering for Rewind

#### File Placement



Placing a File on a Single Disk

• Interleaving

- Video, audio, text in single contiguous file per movie

#### Two Alternative File Organization Strategies (1)



Noncontiguous Movie Storage

 (a) small disk blocks
 (b) large disk blocks

Two Alternative File Organization Strategies (2)

#### Trade-offs between small, large blocks

- 1. Frame index
  - heavier RAM usage during movie play
  - little disk wastage
- Block index (no splitting frames over blocks)
  - low RAM usage
  - major disk wastage
- Block index (splitting frames over blocks allowed)
  - low RAM usage
  - no disk wastage
  - extra seeks

#### Placing Files for Near Video on Demand



Optimal frame placement for near video on demand

### Placing Multiple files on a Single Disk (1)



- Zipf's law for *N*=20
- Squares for 20 largest cities in US
  - sorted on rank order

### Placing Multiple files on a Single Disk (2)



- Organ-pipe distribution of files on server
  - most popular movie in middle of disk
  - next most popular either on either side, etc.



**B4** 

**B**5



Organize multimedia files on multiple disks (a) No striping (b) Same striping pattern for all files

(c) Staggered striping

(d) Random striping



**Block Caching** 

(a) Two users, same movie 10 sec out of sync(b) Merging two streams into one

# File Caching

- Most movies stored on DVD or tape
  - copy to disk when needed
  - results in large startup time
  - keep most popular movies on disk

Can keep first few min. of all movies on disk
– start movie from this while remainder is fetched

# Disk Scheduling for Multimedia



#### Static Disk Scheduling

• In one round, each movie asks for one frame

# Dynamic Disk Scheduling



• Scan-EDF algorithm

- uses deadlines & cylinder numbers for scheduling